
Maximum Subarray Sum

Pratik Deoghare

June 12, 2025

v1 v2 v3 . . . vn−1 vn

src

sink

−A1 −A2 −A3 −An−1

−
A
1

−
A

2

−
A

3 −A
n
−1

−An

Given an array A of length n construct a directed graph as follows.
Add vertices

� Add special vertices src, sink.

� Add one vertex vi for each Ai.

V := {src, sink} ∪ {vi for 1 ≤ i ≤ n}

Add edges

� Add edge of weight 0 from src to each vi.

� Add edge of weight −A[i] from vi to sink.

� Add edge of weight −A[i] from vi to vi+1.

E := {(src, vi, 0)} ∪ {(vi, sink,−A[i]} ∪ {(vi, vi+1,−A[i])}

We find shortest path from src to sink. -1 times cost of that path is our
answer.
Now, you might be thinking Kadane’s algorithm is just a few lines and this
one will need a lot of code. Let me show you how little code is needed. This

1



is a DAG so we can find the shortest path by relaxing edges going out of
vertices in topological order. We don’t need to implement topological sort
because we already know the order i.e. sink, vn, vn−1, . . . , v0, src.

Max-Subarray-Sum(A)

1 d[v] = 0 for v ∈ V
2 d[vn] = −A[n]
3 for vi = vn−1, . . . , v1, src
4 for v ∈ Adj[vi]
5 RELAX(vi, v, weight(vi, v))
6 return -min{d[v] for v ∈ V }

We know there are only two outgoing edges from the vertices being relaxed.
We replace RELAX by its implementation for each of those edges to get the
code below.
Substitute adjacent vertices.

Max-Subarray-Sum(A)

1 d[v] = 0 for v ∈ V
2 d[vn] = −A[n]
3 for vi = vn−1, . . . , v1, src
4 RELAX(vi, vi+1, weight(vi, vi+1))
5 RELAX(vi, sink, weight(vi, sink))
6 return -min{d[v] for v ∈ V }

Substitute weights.

Max-Subarray-Sum(A)

1 d[v] = 0 for v ∈ V
2 d[vn] = −A[n]
3 for vi = vn−1, . . . , v1, src
4 RELAX(vi, vi+1, −A[i])
5 RELAX(vi, sink, −A[i])
6 return -min{d[v] for v ∈ V }

Substitute implementation of RELAX.

Max-Subarray-Sum(A)

1 d[v] = 0 for v ∈ V
2 d[vn] = −A[n]
3 for vi = vn−1, . . . , v1, src
4 d[vi] = min(d[vi], d[vi+1] −A[i])
5 d[vi] = min(d[vi], d[sink] −A[i])
6 return -min{d[v] for v ∈ V }

2



This in turn is equivalent to the following final code since d[sink] = 0.

Max-Subarray-Sum(A)

1 d[v] = 0 for v ∈ V
2 d[vn] = −A[n]
3 for vi = vn−1, . . . , v1, src
4 d[vi] = min(−A[i], d[vi+1] −A[i])
5 return -min{d[v] for v ∈ V }

3



Here is golang implementation

func maxSubarraySum(A []int) int {

n := len(A)

d := make([]int, n)

d[n-1] = -A[n-1]

for i := n-2; i >= 0; i-- {

d[i] = min(-A[i], -A[i] + d[i+1])

}

return -slices.Min(d)

}

We could maintain the global min while looping instead of computing it at
the end using slices.Min.

func maxSubarraySum(A []int) int {

n := len(A)

d := make([]int, n)

d[n-1] = -A[n-1]

minn := d[n-1]

for i := n-2; i >= 0; i-- {

d[i] = min(-A[i], -A[i] + d[i+1])

minn = min(minn, d[i])

}

return -minn

}

Looks exactly like Kadane’s algorithm, doesn’t it?

4


